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Abstract. This study focuses on enhancing an automated SQL state-
ment grading model by expanding the dataset and integrating Local
Interpretable Model-agnostic Explanations (LIME) to improve explain-
ability. By incorporating a significantly larger dataset, the model’s abil-
ity to generalize across a variety of SQL queries has been enhanced, as
demonstrated by improved performance metrics such as precision, recall,
and F1 scores. The integration of LIME provides insights into the infer-
ence processes of the model, highlighting the influence of specific SQL
components on assessment outcomes. These enhancements have practi-
cal implications, including more accessibility for users to understand the
rationale behind model decisions, potentially leading to more effective
learning experiences.

Keywords: attention · CNNs · SQL · natural language processing ·
machine learning · deep learning · explainable AI · LIME.

1 Introduction

Grading SQL queries can prove to be arduous, time-intensive, and tedious.
The tedium and time consumption stems from the sheer workload, particularly
when dealing with large assignments across multiple sections of the same course.
Challenges emerge from the realization that there are usually many correct ap-
proaches (and infinitely many incorrect ones) to developing each query, with in-
correct submissions deserving partial credit based on their closeness to a correct
solution. As an example, consider a simple query such as “Name the freshmen
computer science majors who are taking Calculus I”. This can be correctly writ-
ten in a wide variety of ways: as a standard query with multiple tables in the
FROM clause, as a nested EXISTS query, as a nested IN query, as a combination
IN/EXISTS query, as a JOIN USING, as a JOIN ON, as a NATURAL JOIN, with or
without aliasing field names and/or table names, etc. These challenges multiply
with the complexity of the assigned query sets.

Automating the grading process can offer a potential time- and effort-saving
solution. However, many existing automated approaches lack the necessary so-
phistication to consistently and accurately assign partial credit for each query.
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Typically, automated grading systems adopt either dynamic analysis, where
queries are executed against fixed datasets and compared with predefined correct
results, or static analysis, which assesses the structure of SQL statements without
execution. Newer systems combine both approaches into a hybrid model [23].

Our approach builds upon these foundational concepts and preliminary work
[18,16] and introduces significant enhancements in the form of an expanded
dataset and the integration of LIME (Local Interpretable Model-agnostic Ex-
planations) for increased explainability. The expanded dataset includes a more
diverse array of SQL statements collected from a broader range of academic in-
stitutions and encompasses a wider variety of SQL syntax and structures. This
allows our model to better understand and predict the nuances of correct and
partially correct SQL queries across different contexts and complexities.

Furthermore, to address the critical need for transparency in AI-driven edu-
cational tools, we have incorporated LIME into our model [14]. LIME provides
clear explanations of our model’s decisions, which is essential for educators and
students. By elucidating the reasoning behind each grading decision, LIME helps
demystify the often opaque processes of machine learning models. This not only
aids in building trust in the automated system but also assists educators in iden-
tifying specific areas where students may need further guidance or clarification.

These enhancements are designed to improve the robustness and utility of
our automated grading system, making it not only more efficient but also more
accountable and accessible to users. By expanding our dataset and integrating
explainability features, our model will not only maintain high accuracy in grading
but also provide insights that support learning outcomes.

The rest of the paper is organized as follows: Section 2 reviews the necessary
background material. Section 3 details our methodology, including the expanded
dataset and the integration of explainability through LIME. Section 4 provides
an overview and evaluation of our experiments, highlighting the results. We
discuss our results in Section 5, while future work and conclusions are drawn in
Sections 6 and 7, respectively.

2 Background and Related Work

2.1 State of the art in automated SQL grading

Automated systems for grading SQL queries generally adopt one of two method-
ologies: dynamic analysis or static analysis. Dynamic analysis involves executing
queries against fixed datasets and comparing the results with predefined correct
answers. Early examples of this approach include SQLator [17], SQLify [6], and
AsseSQL [13]. More recently, systems like SQL Tester and ASQLAG have been
developed. SQL Tester provides an online tool that compares a student query
with an answer-key query, but the comparisons are case-sensitive, and the re-
sults must appear in the same order [10]. ASQLAG uses an object-oriented design
technique with an MVC (Model-view-controller) framework, which is capable of
grading assignments across various DBMS platforms [19]. These dynamic anal-
ysis systems may suffer from inaccuracies, particularly when incorrect queries
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produce results identical to those of the answer key or when differences in out-
put format affect grading. For example, consider the following query: Name the
suppliers who ship green parts. It might be the case the suppliers who ship green
parts happen to have supplierIDs that are between 100 and 200. A query based
on these supplierIDs might produce the same results but certainly should not
earn the same (or any) credit. For example, consider queries that produce an
empty result table as a correct answer. There are infinite queries that fall into
this category, few of which should earn any credit. While dynamic analysis does
lack the ability to accurately award credit for correct answers, this approach is
good at identifying incorrect queries, which is very useful.

Static analysis, on the other hand, evaluates query structures without execut-
ing the query itself. Examples of this approach include a system that compares
student queries with answer-key queries through the use of string similarity met-
rics [21] and automated SQL provers like Cosette [4], which encode queries into
logic formulas to determine logical equivalence. Building upon this methodology,
Chu et al. introduced an innovative unbounded semiring (U-semiring) approach
to further assess the equivalences of SQL queries. This approach is able to pro-
vide more refined feedback to students, but requires that all possible correct
queries be included in the “answer key”. The student query is compared to all of
the answer-key queries, then the student is awarded the highest score from the
comparisons [5].

Hybrid approaches, which combine dynamic and static analysis, aim to mit-
igate the limitations of each approach and facilitate the awarding of partial
credit for incorrect queries. Some of these systems [23] employ the dynamic ap-
proach to identify incorrect queries, then use the static approach to determine
how much partial credit to award. The XData system [2,3,1] generates datasets
tailored to identify common query-development errors, then uses the static ap-
proach, referred to as edit-based grading, to evaluate the SQL queries to deter-
mine the necessary changes to transform the submitted query into an equivalent
correct form. Nayak et al. present an approach that compares student queries
and answer-key queries using feature similarities based on semantic similarities,
string-based similarities, and vector similarities [12]. Fabijanic and Mekterovic
describe an automatic assessment system of SQL queries that utilizes both ap-
proaches to award partial credit and give feedback to students describing the
parts of the query that the system identifies as being incorrect [7].

Our system takes a different approach by leveraging AI to model SQL state-
ments with a novel architecture [16,18].

2.2 Importance of explainability of AI-based tools in higher-ed

Explainability in AI-based tools, especially in higher education and automated
grading, is important for many reasons that affect the education field. Machine
learning models in educational technology have grown, improving the ability
to explain, predict, and understand actions within systems and human interac-
tions [25]. This growth in AI technology use in higher education, particularly
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in automated grading systems, has increased rapidly, especially during the pan-
demic [11]. AI in educational tools like automated grading has shown it can make
the education process more efficient and effective [24].

AI-based tools must be explainable to ensure clarity and accountability in
decision-making, especially in automated grading systems in higher education.
Educators and students must understand and interpret AI outputs to trust the
results and provide helpful feedback [11]. Also, explainable AI in education can
help find biases, mistakes, or limits in the algorithms, supporting fair and equal
grading [25]. Clear and understandable AI models help schools keep academic
standards and ensure grading is consistent and reliable.

Explainability in AI tools for automated grading also helps identify student
learning patterns, allowing teachers to tailor their teaching methods to meet in-
dividual needs [25]. This personalized education approach can boost student en-
gagement, performance, and learning outcomes. Moreover, explainable AI gives
insights into the grading criteria, helping students better understand the assess-
ment process and meet expectations [24].

In higher education, where critical thinking and analysis skills are key, ex-
plainability in AI grading tools is essential. Understanding how AI makes grading
decisions helps students improve their self-sufficiency and deepen their subject
knowledge [24]. This clarity benefits students and enables teachers to improve
their methods based on AI feedback, leading to ongoing enhancements in edu-
cation.

3 Enhancements to the Methodology

3.1 Expanded Dataset

The dataset used in our research primarily consists of SQL statements ini-
tially collected for the purpose of grading automatization [8]. The original data,
available online at https://zenodo.org/records/6526769, includes a detailed
database schema used in student exercises and assignments, along with tables
containing anonymized student submissions, feedback, grades, pass/fail flags,
and other relevant information. This original dataset encompasses 675 distinct
samples of student submissions, with approximately 58% graded as correct, in-
dicating a potential class imbalance. The grades and remarks (Correct, Par-
tially Correct, Non-Interpretable, and Cheating) provide a rich basis for training
our model to recognize and evaluate SQL statements accurately across different
schemas and complexities. This led to our preliminary results reported in [18,16].

To enhance our model’s ability to generalize across different student levels
and SQL schema complexities, we have augmented our dataset with an addi-
tional 4,723 samples from coursework assignments from a college-level introduc-
tory database course at Marist College. This expansion was driven by the need
to mitigate the risks of poor generalization that were evidenced in the earlier
model’s performance.

The new samples include a broader range of SQL queries, varying in both
complexity and structure, thereby providing a more comprehensive training

https://zenodo.org/records/6526769
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ground for our models. This diversity ensures that the trained model can adapt
to a wider array of real-world educational settings, improving its effectiveness in
automated SQL statement grading.

The rationale for selecting coursework assignments from Marist College re-
volves around the observed need to diversify the types of SQL queries and
database schemas. By integrating these additional samples, we aim to reduce
model bias and enhance predictive accuracy, especially in scenarios that were
not adequately covered by the original dataset.

These augmented datasets, combined now totaling 5,398 SQL samples, are
preprocessed using standard word tokenization [22] to maintain consistency with
the initial training procedures. Each SQL statement is then tokenized into a
vocabulary of 1480 items, with all tokenized SQL statements pre-zero-padded to
a uniform length of 219 tokens, as shown in our dataset overview in Table 1.

Table 1. Sample Data Extracted From Expanded Dataset

Submitted Answer Correct? Remark Grade
SELECT DISTINCT s.Price, ... 1 Correct 100
SELECT v.vnum, p.pnum, s.snum... 0 Partially 20
...

...
...

...
Total count: 5,398 Avg: 0.58 Total: 4 Avg: 85

A representative sample of the length is the following SQL statement:

SELECT md.title,
md.production_year,
md.first_name,
md.last_name

from (movie
NATURAL JOIN director
NATURAL JOIN person) as md,
(SELECT title,

production_year
FROM movie_award
WHERE lower(award_name)=’bafta film award’
AND lower(category)= ’best film’
AND lower(RESULT)= ’won’) as ma

Where ma.title = md. title
and ma.production_year = md.production_year;

In this sample, only indentation was added for reading clarity. The rest of the
statement was not altered.

With this enhanced dataset, the model training now employs a parameter-
sharing strategy, adapting to predict not only the correctness of SQL submissions
but also detailed remarks and grading assessments. This approach allows for
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dynamic adjustment of the model’s parameters based on a richer set of training
data, ensuring robustness and accuracy in grading.

3.2 Model Reconfiguration

Our earlier neural model [18,16] comprises several components integral to pro-
cessing and learning from SQL statement sequences. Each part contributes to
the model’s ability to understand and evaluate SQL based on different criteria.

The neural architecture designed for automated SQL statement grading en-
compasses several key components aimed at refining the model’s interpretive and
predictive capabilities. Starting with an Embedding Layer, the model converts
SQL tokens into 64-dimensional vectors, resulting in an output of R172×64. This
is followed by a Self-Attention CNN, which includes convolutional layers for
modeling queries and values, employing dot product similarity to assess contex-
tual relationships, and culminates in a global average pooling that condenses
the data into a 200-dimensional vector representing the SQL context. Regu-
larization Techniques such as a 25% dropout and batch normalization ensure
robustness by preventing overfitting and stabilizing the learning process. A Bot-
tleneck Layer facilitates the visualization of data in two dimensions, enhancing
interpretative analysis. The architecture concludes with three specialized Out-
put Layers for predicting SQL correctness (Model C), remark types (Model
R), and grading scores (Model G), using sigmoid activations to cater to the
distinct aspects of SQL assessment. This comprehensive structure not only en-
sures nuanced understanding and evaluation of SQL queries but also enhances
the model’s generalization across varied tasks by sharing parameters up to the
bottleneck layer.

Modifications to Neural Architecture To effectively leverage the increased
diversity and volume of our expanded dataset, we implemented several key mod-
ifications to our neural architecture. Originally configured with a vocabulary size
of 292, we have now expanded this to 1,480 to capture a broader range of SQL
syntax and semantics prevalent in the new dataset samples. This expansion ne-
cessitates adjustments in the embedding layer, which now outputs vectors in
R172×1480, significantly enhancing the model’s capacity to encode more complex
SQL statements.

In addition to the vocabulary expansion, we adjusted the model’s training
parameters to optimize learning from the larger dataset. The learning rate was
set to 0.001 to provide a balance between convergence speed and training stabil-
ity. Furthermore, the batch size was increased to 64, facilitating more efficient
gradient approximations and faster processing of the larger input batches [15].

Integration of LIME for Model Interpretability The interpretability of
our model’s predictions is crucial for educational applications, where understand-
ing the reasoning behind grading decisions can significantly impact learning out-
comes. To this end, we integrated the LIME framework using LimeTextExplainer,
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specifically tailored to handle textual data [14]. LIME, or Local Interpretable
Model-agnostic Explanations, provides insights into our model’s decision-making
process at the instance level.

The core functionality of LIME can be succinctly described through its ability
to locally approximate the decision boundary of any black-box model around a
given prediction. For textual data, LimeTextExplainer operates by generating
perturbed samples of the input text and observing the corresponding model
predictions for these samples. More formally, let x represent the original SQL
statement instance and X the domain of all possible SQL statements. LIME
first constructs a neighborhood N around x by randomly altering segments of
x, thereby creating a dataset {x1, x2, ..., xn} where each xi ∈ N .

For each perturbed sample xi, the black-box model’s prediction probability
vector pi is computed. LIME then approximates the local decision surface by
training an interpretable model, typically a linear model, on this new dataset.
The interpretable model is defined as ĝ(·), where:

ĝ(x) = ω0 +

d∑
j=1

ωjfj(x). (1)

Here, ω0, ωj ∈ R are the coefficients to be learned, and fj(x) are interpretable
features derived from the text, such as the presence or absence of SQL keywords,
tokens, or words.

To ensure the fidelity of ĝ to the original model predictions near x, LIME
minimizes a loss function that weighs the proximity of each xi to x. This prox-
imity weighting, denoted as πx(xi), penalizes discrepancies between ĝ(xi) and
the original model’s predictions pi more heavily for samples xi that are closer
to x. The optimization problem can be formally expressed as:

ξ(ω) =

n∑
i=1

πx(xi)L(pi, ĝ(xi)) +Ω(ω), (2)

where L is a loss function measuring the prediction error, and Ω represents a
complexity penalty on the model ĝ to avoid overfitting.

By solving this optimization, LIME produces a model ĝ that is locally faithful
to the black-box model, allowing interpreters to discern which features (words
or phrases) significantly influence the prediction at the instance level.

LIME blends easily with our binary and multiclass classification heads, i.e.,
Model C and Model R. However, restructuring is needed for our regression
head to make it classification-like, with the goal of classifying an SQL state-
ment grade into ten distinct classes, representing grade ranges from ‘0-10%‘ to
‘91-100%‘. We modified the output of the regression head, Model G, for our
explainer model accordingly. Each class corresponds to a specific range of grades,
and the explainer assesses how each token in the SQL statement contributes to
classifying into these ranges. Formally, the output of Model G is passed through
a softmax activation as:

ŷ = softmax(W · ϕ(x) + b), (3)
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where ŷ represents the predicted probabilities of each class, W and b are the
weights and biases of the classifier, and ϕ(x) denotes the feature representation
of the input x, derived from the last hidden layer of our neural network. The
softmax function is used to normalize the output into a probability distribution
over the ten grade ranges, which facilitates LIME’s integration. Note that here,
x is a vector of tokens that represents an input SQL statement x.

This integration of LIME not only enhances our model’s transparency but
also allows educators and developers to visually inspect which parts of the SQL
query most influence the grading outcomes, thereby enabling targeted improve-
ments in both teaching strategies and model refinement.

4 Experiments and Results

4.1 Updated Model Performance

In the next few paragraphs, we present the results of training the enhanced
model on the extended dataset, and we compare performance metrics with the
previous model [18,16] to demonstrate improvements.

In the previous version of our model, we implemented a leave-one-out (LOO)
cross-validation method to estimate generalization error [9]. Therefore, the per-
formance metrics discussed below are based on the LOO approach.

Regarding the correctness model, labeled as Model C, the resulting confu-
sion matrix and Receiver Operating Characteristic (ROC) curve are displayed
in Fig. 1 and Fig. 2, respectively. The confusion matrix in Fig. 1 shows a higher
number of false positives (FP) than false negatives (FN). This discrepancy stems
from the class imbalance noted in Table 1, where the majority of the samples be-
long to the correct class. Due to this imbalance, we prioritize balanced accuracy

Fig. 1. Confusion matrix for the model that predicts correctness.
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Fig. 2. ROC and AUC for the model that predicts correctness.

over traditional accuracy measures. The balanced accuracy achieved is 84.7%,
marking an improvement from the previous rate of 81.2%.

Additionally, the LOO cross-validated ROC curve, depicted in Fig. 2, con-
firms that the model’s performance significantly surpasses random chance, achiev-
ing an Area Under the Curve (AUC) of 0.87. This AUC indicates consistent
performance across both models under evaluation.

For the remarks model, Model R, results obtained from the LOO cross-
validation are displayed in Fig. 3. This figure illustrates that the performance for
remarks indicating correctness, specifically Correct and Partially Correct, is
superior to those associated with negative feedback. These findings align with
prior observations that predictions related to correctness are more accurate than
those for non-correctness. Fig. 3 includes the average precision (AP) score, a
weighted average of precision values, alongside the F1 curves for additional con-
text.

The confusion matrix presented in Fig. 4 further supports these results, show-
ing that the classes Cheating and Non Interpretable performed the worst,
largely due to their smaller sample sizes. Comparatively, the overall model accu-
racy has improved from 65.9% to 82.4%. As detailed in Table 2, the performance
metrics for classes associated with positive feedback, such as Precision, Recall,
and F1-scores, have shown significant improvement, whereas those related to
negative feedback have declined.

For the grades model, Model G, we analyzed performance using leave-one-
out (LOO) cross-validation, with results summarized in Fig. 5 and Fig. 6. The
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Fig. 3. Precision-Recall curves and average precision scores per remark.

Fig. 4. Confusion matrix for the model that predicts remarks.

regression analysis comparing predicted grades to actual grades suggests that our
model tends to avoid predicting perfect grades (100%) and generally predicts
more conservatively across a broader range. This tendency is reflected in the
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Table 2. Classification and Regression Performance Analysis

Class Evaluation Metrics
Evaluated Prec. ∆ Recall ∆ F1-score ∆ Support ∆

Incorrect 0.88 +0.12 0.77 −0.03 0.82 +0.04 2276 +1994
Correct 0.85 – 0.93 +0.11 0.88 +0.04 3122 +2729

Accuracy 0.86 +0.05 5398 +4723
Balanced Accuracy 0.85 +0.04 5398 +4723

Cheating 0 – 0 – 0 – 6 –
Correct 0.79 +0.01 0.97 +0.17 0.87 +0.08 3122 +2729
Non Interpretable 0 −0.26 0 −0.09 0 −0.13 69 +12
Partially Correct 0.91 +0.40 0.64 +0.06 0.65 +0.11 2201 +1982

Accuracy 0.82 +0.16 5398 +4723
Balanced Accuracy 0.41 +0.04 5398 +4723

Regression R2 ∆ EV ∆ MAE ∆ MSE ∆

ŷ = Grade 0.427 +0.279 0.429 +0.008 0.113 −0.120 0.029 −0.042

Fig. 5. True vs predicted regression plot for the model that predicts grades.

histogram of residuals, y − ŷ, shown in Fig. 6, where a slight positive skew is
evident. Ideally, residuals should center around zero, indicating no systematic
bias in predictions.

Despite these observations, the regression performance metrics still demon-
strate the model’s capability to predict grades effectively, which extends beyond
merely estimating the mean of the dependent variable Grade. Comprehensive
performance metrics for all models, including the regression analysis, are de-
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Fig. 6. Histogram of the residuals y − ŷ for the model that predicts grades.

tailed in Table 2. This summary includes the coefficient of determination, R2,
explained variance, EV , mean absolute error, MAE, and mean squared error,
MSE. Notably, error metrics have improved compared to the previous model,
with the MAE reduced by more than half to 0.113, and the MSE decreased
to 0.029 from 0.071. These improvements are supported by the variance analy-
sis, indicating that the model’s predictions are substantially better than random
guesses. Specifically, the R2 value increased significantly from 0.148 to 0.479,
and the EV rose slightly from 0.421 to 0.429.

Table 2 also includes detailed metrics for each model, encompassing stan-
dard classification measures such as Precision, Recall, and F1-score, along with
standard and balanced accuracy. Any notable performance differences between
the new and prior models are highlighted in the ∆ column, indicating both the
magnitude and direction of the changes. In general, the table shows that most of
the metrics improved with the exception of those with very little data support,
i.e., the ones associated with negative grading outcomes.

4.2 Explainability Assessment

In this study, the LIME framework plays a crucial role in elucidating the decision-
making processes of our predictive models. Specifically, LimeTextExplainer is
employed to generate explanations for individual predictions, particularly useful
in the context of text-based input such as SQL statements or student responses.
As defined earlier, LIME operates by perturbing the input data and observing
the effect on the output, thus approximating the local decision boundary of the
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model around the input instance [14]. For each instance analyzed, LIME provides
a set of features weighted according to their contribution towards the prediction,
effectively highlighting which aspects of the input text most influence the model’s
output. This method of local interpretation is indispensable for validating model
behavior and ensuring transparency, especially in educational applications where
understanding the basis for automated grading decisions can significantly impact
educational outcomes and student feedback.

Now, let us examine closely some examples on how LIME can provide insights
into the grading decisions made by our model.

Correctness In our first case study, the LIME framework was deployed to shed
light on the decision-making processes underlying the prediction of SQL query
correctness. As depicted in Fig. 7, LIME revealed that several SQL elements and
their associations significantly influenced the model’s determination of query cor-
rectness. Notably, the feature ZPARENTCOMP, with a weight of 0.51, was identified
as having the most substantial impact on the prediction, indicating its crucial
role in the model’s assessment. Other significant features included DISTRID and
keywords like IN, which collectively contributed to the model’s classification of
the query as incorrect. This particular analysis pointed out that while the query
syntactically integrated complex elements such as sub-queries and conditions,
specific attributes linked to table ZPARENTCOMP and ZNETWORK led to a negative
outcome. The probability scores, i.e., Incorrect at 0.96 and Correct at 0.04,
underscore the model’s confidence in its evaluation, demonstrating LIME’s util-
ity in explicating which features sway the model’s grading decisions and thus
providing a basis for learners’ early understanding.

Prediction probabilities

0.96Incorrect

0.04Correct

Incorrect Correct
ZPARENTCOMP
0.51

DISTRID
0.13

IN
0.12

ZSPONSORBY
0.11

ZNETWORK
0.09

SELECT
0.07
WHERE
0.04

PARENT_NUM
0.04

ZDISTRIBUTOR
0.04

RCA
0.03

Text with highlighted words

SELECT ZTVSHOW.SHOW_NAME, ZTVSHOW.NETWORK_ID
FROM ZTVSHOW
--THROUGH THE DISTRIBUTOR
WHERE ZTVSHOW.DISTRID IN
(SELECT ZDISTR.DISTRID
FROM ZDISTRIBUTOR ZDISTR
WHERE ZDISTR.PARENT_NUM IN
(SELECT ZPARENTCOMP.PARENT_NUM
FROM ZPARENTCOMP
WHERE ZPARENTCOMP.PARENT_NAME = 'RCA'))
--THROUGH THE SPONSOR
OR ZTVSHOW.SHOW_NUM IN
(SELECT ZSPONSORBY.SHOW_NUM
FROM ZSPONSORBY

Fig. 7. Explained predictions of the SQL grading model highlighting key contributions
of input features towards the model’s decision-making.

Remarks In the case study shown in Fig. 8, LIME was utilized to uncover the
determinants behind the model’s decision-making for feedback on SQL queries.
For an intricate SQL query involving multiple tables and conditional statements,
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LIME’s analysis can be instrumental for a student. The model positively eval-
uated the query, largely attributing the remark of Correct to the effective use
of conditions linking multiple tables. Key attributes such as actor_num and
show_num significantly influenced the model’s favorable feedback, with LIME
highlighting their impacts with weights of 0.49 and 0.30 respectively. This anal-
ysis by LIME revealed that the model recognized the complexity and correctness
of the multi-table conditions. The probabilities provided by LIME, i.e., Correct
at 0.78 and Partially Correct at 0.20, reflect the model’s ability to appreci-
ate the syntactical structure and logical coherence of the query. Such insights
are invaluable as they illustrate the specific factors that models use to assess
SQL queries, enhancing transparency and aiding in the educational process by
clarifying how certain SQL constructs impact automated grading decisions.

Prediction probabilities

0.01Cheating

0.78Correct

0.01Non Interpre...

0.20Partially Correct

NOT Correct Correct
actor_num

0.49
C

0.33
show_num

0.30
A

0.23
AND

0.22
P1

0.21
char_num

0.18
SELECT

0.13
zACTOR

0.11
zPLAY
0.11

Text with highlighted words

SELECT A.actor_name, C.char_name
FROM zACTOR A, zCHARACTER C, zPLAY P1, zPLAY P2
WHERE A.actor_num = P1.actor_num
AND A.actor_num = P2.actor_num
AND C.char_num = P1.char_num
AND P1.show_num = P2.show_num
AND P1.char_num || P2.char_num;

Fig. 8. Explained predictions of the SQL grading model highlighting key contributions
of input features towards the model’s decision-making.

Grades In the case study shown in Fig. 9, the LIME framework was utilized to
provide interpretative insights into a model’s decision-making process for grading
SQL queries. The figure demonstrates LIME’s explanation for a specific predic-
tion where the model evaluated an SQL query aimed at selecting and correlating
data across multiple tables. According to LIME’s output, certain SQL keywords
and table attributes significantly influenced the model’s grading decision. For
instance, terms such as vendors and sourcecity were highlighted as highly in-
fluential, with positive weights of 0.18 and 0.13, respectively, suggesting their
correct usage in the context of the query supports a higher grade classification.
Conversely, the presence of other elements like snum and vendorname contributed
negatively but with slightly lesser weights. This example clearly showcases how
LIME helps pinpoint specific features within student submissions that either bol-
ster or detract from the perceived correctness and quality of the SQL queries,
thus offering students and educators an automated understanding of grading
decisions.



Explainable AI for SQL Grading 15

Prediction probabilities

1.0031-40%

0.0541-50%

0.0521-30%

0.000-10%

0.00Other

NOT 31-40% 31-40%
vendors

0.18
sourcecity

0.13
LosAngeles
0.09

AND
0.09

hqloc
0.09

snum
0.08

snacks
0.08

FROM
0.07

SELECT
0.07

vendorname
0.05

Text with highlighted words

SELECT snacks.snum, vendors.vendorname, vendors.hqloc
FROM snacks, vendors
WHERE snacks.sourcecity = vendors.hqloc
AND vendors.hqloc = 'LosAngeles';

Fig. 9. Explained predictions of the SQL grading model highlighting key contributions
of input features towards the model’s decision-making.

5 Discussion and Future Work

The results of implementing automated SQL statement grading reveal signifi-
cant implications for the efficiency and accuracy of educational assessments and
learners’ early feedback. The integration of explainability tools like LIME has
benefits, such as increasing the accessibility of the model’s decision-making pro-
cess, clarifying how decisions are derived, and empowering users to self-monitor
their understanding.

However, the introduction of a larger dataset and new methods of explainabil-
ity does not come without challenges. Potential biases inherent in the expanded
dataset and the limitations of current explainability tools could skew the model’s
accuracy against underrepresented data instances. These biases need careful con-
sideration to avoid reinforcing existing class imbalances.

Looking forward, there is room for improvement in our model. Further re-
search could explore the integration of other explainability tools beyond LIME
or Captum [20], for example, SHAP-based explainability, potentially providing a
more rounded understanding of model decision-making. Additionally, expanding
the dataset to include a wider array of SQL queries and conditions would likely
improve the model’s robustness and generalization capabilities.

6 Conclusions

This research has made significant contributions to the field of automated SQL
statement grading by expanding the training dataset and incorporating explain-
ability methods like LIME. These enhancements have not only improved the
model’s accuracy but have also made its inference process more transparent
and interpretable. The results indicate that with more data, the model’s abil-
ity to correctly assess SQL queries has increased, reflected by higher balanced
accuracy and AUC values. The use of LIME has elucidated how specific ele-
ments within SQL statements affect grading decisions, fostering skill improve-
ment among users. This shift towards more interpretable and user-centered AI
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tools is especially pivotal in educational contexts, where clear insights into au-
tomated assessments can enhance teaching strategies and student learning. Fur-
thermore, these advancements encourage ongoing research to explore additional
explainability tools and further dataset augmentation to refine the model’s per-
formance and reliability. The journey towards fully transparent and accountable
AI in education continues to evolve, promising advances in how technology can
support educational outcomes.
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