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Abstract. Digital images possess rich features that are highly corre-
lated among neighboring pixels and highly redundant bits. Thus, the
study of encryption algorithms over images is a subject of study to de-
termine encryption quality. In this paper, we study the applicability of
neural networks in learning to use secret keys to protect information (e.g.
images) from other neural networks. We implement a well-known adver-
sarial neural network architecture that is designed to learn to establish
its own encryption method to protect itself from an attacker that is also
a neural network. Our preliminary results suggest that this type of neu-
ral architecture is capable of securing communications in the midst of a
neural-based attacker using only 16-bit blocks.

Keywords: adversarial neural networks · encryption · symmetric key
encryption.

1 Introduction

Recently, there has been interest in encryption and decryption of communica-
tions using Adversarial Neural Networks [1]. This is due to Adversarial Neural
Networks which can be trained to protect the communication using Artificial In-
telligence. As neural networks can be used for advanced functional specifications
which can be categorized into complex task and those are beyond simple func-
tional specifications. These objectives include, for example, generating realistic
images [5] and solving multiagent problems [3, 9]. Advancing these lines of work,
we showed that neural networks can learn to protect their communications in
order to satisfy a policy specified in terms of an adversary.

Cryptography concerns broadly with algorithms and protocols that will give
certainty that the secrecy and integrity of our information is maintained. Cryp-
tography is the science of protection our data and communication.

A secured mechanism is where it achieves its goal against all attackers. So
these form Turing machines or a cryptographic mechanism are formed as pro-
grams. Hence attackers may be described in those terms as well as the complex-
ity of time and how frequently are they successful in decoding messages. For
instance, an encryption algorithm is said to be secure if no attacker can extract
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information about plaintexts from ciphertexts. Modern cryptography provides
rigorous versions of such definitions [4]. For a given problem Neural networks
have the ability to selectively explore a solution space. This feature finds a nat-
ural niche of application in the field of cryptanalysis.

Neural networks provides new methods of attacking an encryption algorithm
based on the fact that neural networks can reproduce any function; this is con-
sidered as a very powerful computational tool since any cryptographic algorithm
must have an inverse function.

In the design of the neural network we study in this paper, adversaries play
a very important role. They were originally proposed using what is known as
’adversarial examples’ that were found using a neural architecture named a gen-
erative adversarial network (GAN) [5]. In this context, the adversaries are neu-
ral networks that sample data from a distribution whose parameters are learned
from the data. Furthermore, as per the Cryptography definition, practical ap-
proaches to training Generative adversarial networks do not consider all possible
adversaries, rather adversaries relatively small in size which are improved upon
by training. We built our work based upon these ideas.

Historically, neural networks have received criticism in the area of cryptog-
raphy since earlier models were not able to model an XOR operation, which is
commonly used in cryptography. However, nowadays neural networks can easily
model XOR operations and be taught to protect the secrecy of data from other
neural networks; such models can discover and learn different forms of encryp-
tion and decryption, without specifically creating an existing algorithms or even
knowing the type of data they will encrypt.

In this paper we will discuss the implementation of such architecture in the
context of image encryption and will comment on the results obtained. This
paper is organized as follows: Section 2 discusses the background pertaining to
cryptography and adversarial learning along with the methodology used. Section
3 discusses our experiments and the results obtained. Finally, Section 4 draws
conclusions of our paper.

2 Background and Methodology

2.1 Ciphertext-only attacks

In the basic architecture proposed by [1], there are 3 neural networks of which
the first one is Alice who is part of the cryptographic learning model, so is tasked
with encrypting binary strings (e.g. of an image) provided a key. Bob, another
friendly neural network, is tasked with learning to decrypt Alice’s message. Both
Alice and Bob are performing symmetric-key encryption, so they have a common
key for encrypting their communication; this key needs to be provided by a
human prior to the learning prior to the learning process. Lastly Eve’s neural
network will be eavesdropping and try to attack or hack their communication by
observing the ciphertext. This is known as a ciphertext-only attack [8]. While
this is a neural network-based architecture, the overall encryption scheme is well
known in textbooks as the one shown in Fig. 1.



Neural-Based Adversarial Encryption of Images 3

Fig. 1: A traditional encryption scheme with a twist: Alice, Bob, and Eve are
neural networks.

2.2 Block cipher mode: ECB

All block ciphers require specific chunks of data (usually binary) of specific sizes
that will be used as input or output. Traditionally, these blocks of data are
encrypted and decrypted; however, what happens to those blocks internally on
the cipher is unique to each cipher. As long as we have information that can
be broken down into binary strings of information (e.g. images) we can use any
block cipher.

In this paper we are concerned with encrypting images. We used the Python
programming language in which we take the image and convert into strings of
byte arrays and then the byte arrays are flattened and converted into binary
strings of the size of the desired block. In this preliminary research we limited
our study to 16-bits of information per block. The choice of this block size is due
to the large training time for larger blocks.

There are several ways or modes in which block ciphers operate. Each mode
provides additional security. The only mode that does not provide additional
security is known as Electronic Code-Book (ECB) mode. It is important to
remark that in order to study the quality of a cipher we must study it by itself
with no additional help from other advanced (and much better) modes, so ECB
is used here for functionality and to allows us an objective measure of quality of
the cipher.

The encryption task in ECB mode here is given by:

Ci = Ek (Pi) , i = 1, 2, 3, . . . (1)

where the function Ek(·) is the encryption algorithm operating with secret key
k, Pi is the i-th block of plain text, and Ci is the corresponding i-th block of
cipher text.

During encryption the key, which is of 16 bits in size, is represented as an
array of the following form:
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Fig. 2: ECB mode of operation on an image based on key k. The encrypted
image, ciphertext, can be saved, displayed, transmitted, or further analyzed as
needed.

key = [0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]

Decryption works in similar way but in reverse w.r.t. encryption, i.e., first
the cyphertext blocks are passed through the decryption nerual network (Bob)
and the original plaintext blocks are recovered. The decryption is here governed
by:

Pi = Dk (Ci) , i = 1, 2, 3, . . . (2)

where Dk(·) is the decryption algorithm operating with key k, and Pi and Ci

are as in Eq. (1).
The reconstruction process of an image in Python follows a similar process

as prior to encryption, i.e. in two stages where in the recovered plaintext is first
converted into hexadecimal numbers, then converted to array of bytes, and then
these arrays of bytes are thereafter reshaped forming an image. This process is
exemplified in Fig. 2.

2.3 Neural architecture

Fig. 3 depicts the neural architecture implemented in Python with Keras on Ten-
sorFlow; the original architecture was presented in [1], and is based on Generative
Adversarial Networks [5]. The neural architecture has two identical networks, Al-
ice and Bob; however, Bob is a mirror (reverse) of Alice. The Alice network has
a combination of one-dimensional convolutional layers and dense layers; there
are a total of four convolutional layers, the first three have hyperbolic tangent
activations (tanh), and the last convolutional layer has a sigmoid activation as
the output. At the input layer, Alice has a dense layer with a tanh activation.
Bob is the exact mirror of Alice, i.e. in opposite order.

The input to Alice has to be two vectors: a binary string denoting the plain-
text P ∈ B16 and a binary string denoting the key k ∈ B16. In this implementa-
tion we used 16-bits for both. The output of Alice is a vector of codes known as
the ciphertext C ∈ R16;
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Fig. 3: Neural architecture of the cipher. During training, Alice and Bob are
trained using randomly generated keys and plaintext while Eve attempts to
recover the plaintext from the ciphertext and no key.

During training, we randomly generated pairs of (P, k) in mini-batches of
size 256, which was determined experimentally to be a nice trade-off between
training speed and performance. A standard random number generator function
g(16) 7→ B16 was used to produce binary strings of length 16. We also determined
experimentally that 30 epochs were sufficient to train the architecture securely.

Before we discuss the adversarial nature of the training, we now address
the design of Eve, the network designed to break the code. Eve’s architecture
is identical to Bob’s, except that it has two stacked Dense layers with tanh
activations, instead of only one, and it is also followed by the same convolutional
layers as Bob. The idea behind this additional dense layer is to give the Eve’s
network a better chance to retrieve the plaintext from the ciphertext.

As opposed to a GAN, the generator is not part of the architecture in this
case, instead we have Alice and Eve competing against each other, where Eve
is the adversary. Alice and Bob are not compeeting but they resemble an au-
toencoder architecture in which the input of Alice (i.e. P and k) is encoded into
C and Bob is taksed with recovering P from C and k. While this task might
be straight-forward in a traditional sense, the code that is produced by Alice
is affected by the degree to which Eve is able to recover P from C alone. We
call Bob’s reconstruction P̂ and Eve’s reconstruction P̃ . During an ideal training
session we want s(P, P̂ ) → 0 and s(P, P̃ ) → ∞, where s(·) is some similarity
measure where zero means they are identical.
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The specific losses used are the following:

LEve =
1

m

m∑
i

|Pi − P̃i| (3)

LBob =
1

m

m∑
i

|Pi − P̂i| (4)

LAlice-Bob = LBob +

(
|P |
2 − LEve

)2
⌊
|P |
2

⌋2 (5)

where the batch size m is 256 and |P | denotes the size of the plaintext, which is
16 in this case.

Eve’s goal is simple: to reconstruct P accurately by minimizing LEve. Bob
simply wants to recontruct the plaintext perfectly using the secret key k by
minimizing LBob. Alice and Bob want to communicate clearly by making Alice
produce a code that Bob can recover using the key while preventing Eve from
learning to recover the plaintext without a key.

3 Experiments and Results

During our experiments implementing the architectures shown in Fig. 3, we
observed convergence of the network as early as in 3000 training steps (or around
12 epochs), as shown in Fig. 4. The total number of steps shown in the figure
come from the selected batch size, which is 256, and the total number of epochs,
which was 30; thus, the horizontal axis from 1 to 7680. The plot shown in Fig. 4
is produced by overlaying 30 different experiments. A typical single experiment
looks like the one shown in Fig. 5.

From Fig. 4 or Fig. 5 we can see three different lines; each line corresponds
to the loss functions as the training takes place over time, i.e. LEve, LBob, and
LAlice-Bob. As expected, both loses LBob and LAlice-Bob are minimized while
LEve is maximized. This min-max game is part of the fundamental definition of
adversarial learning [6].

During the training of the models, for each trainin step, both Alice and
Bob are trained together so that Alice learns to produce a ciphertext based
on a unique key, and Bob learns to retrieve the plaintext from ciphertext and
key. Next, Eve is trained on the ciphertext preventing Alice from adapting its
parameters. However, note that in training Eve, we are drawing twice as a many
cyphertext samples as with Bob, hoping to have the best version of Eve in every
iteration. The parameter updates are done with a stochastic gradient descent
algorithm known as RMS Prop [2, 7], with standard parameters.

In order to measure the quality of the cipher we produce pairs of 10,000
binary strings and their keys, (P, k), and observe the percentage of plaintext
bits recovered by Bob and Eve. We performed this experiment 30 times and
produced the histogram counts shown in Fig. 6. We can see that most of the
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Fig. 4: Loss functions, LEve, LBob, and LAlice-Bob, are minimized over time as
training steps are performed. Results of 30 experiments are shown.

Fig. 5: Loss functions, LEve, LBob, and LAlice-Bob, are shown for a single training
experiment.
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Fig. 6: Histogram that counts the frequency of both Bob and Eve correctly recov-
ering all the bits in the original plaintext. As desired, Eve has a low percentage,
while Bob has a very high percentage. These frequency counts are based on 30
independent experiments.

time Bob can reconstruct the plaintext bits beyond a 99.5% of accuracy. On
the other hand, Eve can usually recover no more than 0.15% of the bits in the
plaintext. This is clearly not a perfect hack of the information encoded. We can
interpret this results a having the best Eve network not being able to crack the
cipher, and Alice and Bob being able to figure out a way to encode information
to a very high degree of secrecy.

Beyond the experiments where we have shown that the losses are minimized
and the bit strings are recovered correctly to high accuracy and that the best
versions of Eve cannot perform successful cipertext-only attacks, now we want
to proceed with our final point which is its applicability in the encryption of
images which contain highly-correlated information in neighbouring pixels. For
this approach we take images and encrypt them with Alice, then we present and
observe the encoded version looking for visual clues that might reveal the content
of the plaintext (image), and then we use Bob to try to recover the plaintext
using the wrong key, to make sure that Bob does not reveal details about the
plaintext, and then we recover using the correct key to make sure the image was
correctly recovered; the results are shown in Fig. 7.

From Fig. 7 we can see that for the cases in which images are properly encoded
(rows a, b, c, and e) the corresponding image when the wrong key is used is also
good quality. Here we refer to good quality and properly encoded as a way to
say the images resemble random noise although some artifacts related to spatial
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Original Encoded Wrong k Recovered

a.

b.

c.

d.

e.

f.

Fig. 7: Test of neural encryption of images. Rows a, b, c, and e are with high-
quality ciphers, while rows d and f are with low-quality ciphers.
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properties of the original might be visible yet not sufficient to reveal textures,
colors, or general shapes. The figure also shows that the recovered image using
the correct key leads to perfect reconstruction. However, while the results shown
are common, we also take some of the worst models to show that a cipher can
reveal information about the original image both in its encoded form, and in
while trying to recover using the wrong key. Such results are shown in rows d
and f. Note however, that in both cases, with a poor cipher or a good cipher,
the wrong key that was used, was actually a key which differed in only one bit;
e.g., if the key is originally:

[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1],

then, the wrong key used was:

[0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,1],

thus, providing with a more accurate representation a typical scenario in which
a cipher should produce a completely different encoding if only one bit in the
key is changed.

4 Conclusions

In this paper we studied the applicability of adversarial neural networks in the
encryption and decryption of images. The cipher we implemented [1], exhibits
high accuracy, fast convergence, and potential for usage in the protection of data
communications and other similar applications. Our experiments suggest that,
usually, the architecture produces good quality results on images, indicating
low visual correlation in neighboring pixels, which validates the high-accuracy
of the models produced experimentally each time. Furthermore, the proposed
experiments validate current studies that show that adversarial training of neural
networks has a great potential in the world of cryptography. The idea that one
neural network can develop its own way of communications while there is a
smart attacker that is listening and learning at the same time is an extraordinary
achievement in the field of deep learning.

While the experiments shown in this paper were limited to only 16-bits for a
key and plaintext, further research will be focused in using larger keys and larger
blocks to study the impact on the quality of the cipher and its attacker; however,
preliminary research shows that increasing the key and block size increases the
training time exponentially. Therefore, further research must include a more
efficient implementation.
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