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Abstract

The complexity of searching algorithms in classical computing is a clas-
sic problem and a research area. Quantum computers and quantum
algorithms can efficiently compute some classically hard problems. In
addition, quantum machine learning algorithms could be an important
avenue to boost existing and new quantum-based technology, reduc-
ing the supercomputing requirements for executing such problems. This
paper reviews and explores topics such as variational quantum algo-
rithms, kernel methods, and Grover’s algorithm (GA). GA is a quantum
search algorithm that achieves a quadratic speed improvement as a
quantum classifier. We exploit GA or amplitude amplification to simu-
late rudimentary classical logical gates into quantum circuits considering
AND, XOR, and OR gates. Our experiments in our review suggest
that the algorithms discussed can be implemented and verified with
relative ease, suggesting that researchers can investigate problems in
the areas discussed related to quantum machine learning and more.

Keywords: Quantum Computing, Quantum Machine Learning, Grover’s
Search Algorithm, Variational Quantum Circuit Classifier.
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1 Introduction

Quantum mechanics is a framework for understanding micro-universe. At a
low scale of distance, we find several counter-intuitive phenomena, and physi-
cists developed a framework to understand this universe, which is, Quantum
mechanics. This framework provides information on a particle’s state described
by a wave function, labeled as (X;t). The Schrodinger equation describes the
time evolution of this wave function, which contains all available information
about the state [1]:

- k) i <1>
where i is the imaginary unit, ~ = 1:054 10 3% J s, which is a Planck’s con-
stant, j i(t) is time-dependent state. Also, M (t) is the Hamiltonian operator
which, for general purposes, represents the energy of the system. This formula-
tion requires particular analysis due the notation, and mathematical concepts.
In addition, we consider that physical magnitudes are in the real domain, R;
but the magnitudes in Eq. (1) are given by complex numbers, C; therefore,
we should talk about new ways to define some physical concepts.

Quantum computing (QC) has a good formalization through mathematics
and physics frameworks. QC is relevant in different fields, such as classical fields
theory [2-5]), computational security with quantum algorithms [6], physics [7],
chemistry [8], biology [9], and learning from data as image recognition [10], and
neural networks [11]. There are more contributions on medical and genetics.

Today, we find a quantum word in different contexts and systems. Some
of these system require more analysis. Therefore, we share details and classi-
fication of different systems. a. Topological Quantum computer implements a
finite-dimensional internal state space with no natural tensor product structure
and in which the evolution of the state is discrete, namely the local Hamilto-
nian (H) is zero, 1 = 0: This function has the same definition as in (1). It
has good stability to create trapped quantum particles [12]. b. One-way quan-
tum computer (or cluster state) prepares a cluster (entangled, graph) state
performs single qubit measurements on it [13]. ¢. Quantum Turing machine
computer implements an abstract machine to model the effects of a quan-
tum computer. This is also called a universal quantum computer model which
captures all of the power of quantum computation [14]. d. A quantum uni-
versal gate (QUG) model is a sequence of reversible transformation which are
represented by gates, a.k.a. quantum gates [15]. The graphical depiction of
quantum circuit elements is described using a variant of the Penrose graphical
notation [16]. A quantum circuit is a representation of a quantum operation
that is performed sequentially. Logic qubits are transported on wires (shown
by horizontal lines), and quantum gates (represented by blocks) act on the
qubits in a typical quantum circuit. The logical gate is a device that controls
or processes data; e.g. the Hadamard H and NOT X gates. e. Adiabatic quan-
tum computation. This model relies on the adiabatic theorem, and is closely
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related to quantum annealing [17]. f. Quantum machine learning (QML) is the
integration of quantum algorithms within machine learning concepts. QML
usually refers to ML algorithms for the analysis of classical data executed on
a quantum computer, quantum-enhanced machine learning [17, 18]. We fur-
ther recently found other classification based on speedup [9]. g. Exponential
speedup. This model requires a quantum computer to make a better-quality
approximation computationally tractable. In general, this is thought for high
dimension, or degree of freedom systems. h. Polynomial speedup. This kind
models do not usually need more qubits than are already needed to do calcula-
tions. i. Heuristic speedups. this model has great potential to be explored when
quantum computers are working. We expect that our understanding of the
performance of these heuristics will improve since the speedup level has some
unknown issues. j. Interfacing with classical algorithms. This kind of paradigm
has limitations rely on the ability to share the quantum and the classical com-
puter. K. Big data and quantum RAM. This model has limitations associated
with the superposition concept, and with the large dataset. All above models
are one scheme to perceive the quantum computing area, but this is an area
with more details, and we will probably have other similar sketch soon.

This area and its paradigms such as adiabatic quantum computer, and
QML can improve areas such as cybersecurity and cryptography which impacts
in our communication systems. In addition, quantum algorithms can improve
the performance of supercomputing. QC is one of the most popular concepts
in the last decade, and we expect significant results and revolutionary ideas in
this century.

As was discussed, QC has different models which can harness the laws of
quantum mechanics to process information. We conceive supercomputing as
the process of doing complex and large calculations using supercomputers.
These supercomputers can use parallel processing. We can perform compu-
tations based on some quantum mechanical concepts such as, superposition,
entanglement, teleportation, and Dirac notation, among others to show the
possible power of QC over classical computation that can possibly reduce the
load in super computers. Many theoretical works prove a quantum advantage.
However, current quantum devices are not at the stage to reflect these improve-
ments in practices. We aim to review such approaches in QC and discuss
possible implementations briefly.

In this paper, we review the Grovers algorithm and quantum machine learn-
ing. Our work is motivated by the amplitude amplification associated with
Grovers’ Algorithms. We exploit amplitude amplification to propose a method
to simulate classical logical circuits into quantum circuits. We use the CNOT
and Toffoli gates to construct AN D; OR; XOR gates. In this review, we showed
that we could construct an oracle for Grover’s algorithm for provided classi-
cal circuit and calculate the initial input states such that the output of the
classical circuit is one with high probability.

This paper contains the following sections: Context, Models, and Methods
(Section 2) with a description of different quantum computing paradigms. We
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present few algorithms in the machine learning context with their performance.
In particular, this section discusses Grover’s algorithm and its implementa-
tion. We share the implementation code with qiskit [19], in python [20, 21]. We
present related works in Grovers algorithm with brief introduction on varia-
tional quantum algorithm and kernel methods in Section 3. The experimental
setup, proposed methods and algorithm is described in Section 4. We present
results and discussion in Section 5, and future works and conclusions are drawn
in Section 6.

2 Context and Models

As mentioned in Section 1, there are different branches in QC. QC is an active
research field, and we can expect regular changes. However, for the scope of
this paper, we consider two paradigms: quantum machine learning and quan-
tum search algorithms. Some relevant algorithms for QC, such as Deutsch,
Bernstein-Vazirani, Simon, Grover, and Shor will be discussed in subsection
2.2. The following subsection presents the quantum computing topics explored
in this paper.

2.1 Quantum Computing

Quantum computing is an application of quantum theory calculus to calcu-
late the probabilities of the output of measurements on physical system [22].
Quantum algorithms implement transformations which are matrices, in terms
of Linear Algebra, and those have their particular (Dirac) representation [23].
Each transformation requires an operator to create superposition, rotation
(on state), or another change on the system. Operator act on states. Each of
those states has the form j i = jOi+ jli; which is the general state in the
fjOi ;jlig basis, where f ; @ are complex numbers, a.k.a. amplitudes [24]. In
quantum circuit model, one operator, namely acting on states, has the form:

11

H = L (2)

H = jOihOj -+ joihij+jlihoj jlihij : (3)

I\DFH MFH

Where, jli = (0 1)T; joi = (1 0)T; and hlj = j1i’; h0j = joi” live in the
dual space. The product jKihlj is an operator, k;| 2 f0;1g, and the % is a
normalization factor. Eq. (2) is the matrix representation of Hadamard gate
and (3) is its Dirac (bracket) representation. H transforms single-qubit asj 1i:
Nonetheless, we can propose a generalization, it means if we apply H on each
qubit in a system with N qubits, the system is now on superposition.
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2.2 Quantum algorithms

Quantum algorithms can be of two types: those to run on quantum computers,
or to run on classical computer with quantum concepts executed as subrou-
tine in quantum device. Regardless the type, these algorithms should improve
speedup or processing of information.

Table 1 shows four basic quantum algorithms, their mappings, and their
functions. Where Deutsch function maps from one qubit to one qubit, Deutsch-

Table 1 Some quantum algorithms, mapping and a brief function description.

Problem Maps Function
Deutsch f:f0;1g!f 0;1g f (x) balanced and constant
Deutsch-Jozsa f:f0;1g" I'f 0;1g Black box oracle function.
Bernstein-Vazirano f:f0;1g" !'f 0;1g f(x)= a x
Simon f:f0;1g" !'f 0O;1g" f(x)=a x

Jozsa and Bernstein-Vazirano function means maps fronn qubits to one
qubits, and Simon mapsn qubits to one n qubits. On the other hand, and
are product modulo 2, and exclusive OR, respectively.

Table 2 presents ten classical algorithms that are proven to achieve speedup
with quantum computing.

Table 2 This table was inspired by ref. [25]. The column headed \Algorithm" refers the
classical learning method. The column headed \Speedup" lists how much faster (if any)
the quantum variant is compared with the best known classical version. And the column
headed \Generalization Performance" indicates whether this quality of the learning
algorithm was studied in the relevant articles.

Generalization

Algorithm Speedup Performance
K-medians Quadratic No
Hierarchical clustering Quadratic No
K-means Exponential No
Principal components Exponential No
Associative memory No
Neural Networks Yes/Numerical
SVM Quadratic/Exponential Yes/Analytical
Nearest neighbors Quadratic Yes/Numerical
Regresssion Quadratic No
Boosting Quadratic YesYes/Numerical

Quantum algorithms are those algorithms that run on a quantum com-
puter. These algorithms achieve performance or e ciency improvements over
any classical counterparts. Quantum algorithms and their applications include
cryptography, medicine, search and optimization, solving linear equations, and
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simulating quantum systems [26]. Shor's algorithm was one of the rst algo-
rithms to deliver the application of quantum computers [27]. Given an integer
N = a b, wherea and b are the prime numbers, Shor's algorithm factor-
izes this problem in O(log N )3 complexity. Most cryptography relies on the
di culty of integer factorization. Shor's algorithm implies that these systems
are not safe against large quantum computer attacks. Possible applications
and mathematical explanations of Shor's algorithm are beyond this paper's
scope. Please refer [27{29] for detailed explanations and discussion on possi-
ble applications. Harrowe et al. rst proposed a quantum algorithm for linear
system [30]. Deutsch and Jozsa algorithm make a single query to determine
whether a function from Z§ to Z, is balanced or constant [23]. For this prob-
lem, any classical algorithm requires at least two function queries. Numerous
quantum machine learning algorithms and applications have been proposed in
recent years. In [31{34] the authors describe some of those algorithms with
data encoding techniques, measurements, and their applications.

Grover's algorithm enﬁbLes us to nd an item x from an unstructured
dataset of N item with O(' N) operations [35{37]. With the algorithm shown
in Fig. 1, the goal is to nd w; given an oracleU; with f : f0;1g" ' f 0; 1g;

F(x) = 1 ifx :. w
0 else if,
and
0 if x =000:::0
fo(x) =

1 else,

where the phase oracle is

Ur jxi = (1)@ jxi;

where,
c
jwil o wi
xilj xi 8x 6 w:
Then
U =1 2jwihwj;
and

joitj oi "

: 4
0" xitj xi 8x600::000 @
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With this algorithm we want to nd the input x 2 f 0; 1g" such that f (x) = 1:
With f :f0;1g" ' f 0;1g as an unknown function, where we implementedJ;
as an oracle.y = w with highest probability. T=H "U; H "; from (4), we
obtain Us, =2 jOihQj " I: This result is known as re ection operator and
it will be used soon [38].

Fig. 1 Quantum circuit for the general version of Grover algorithm.

Two registers used in Grover's algorithm, n qubits in the rst register
and one qubit in the second register, are the critical architectural structure
to achieve this speedup complexity over the classical algorithm [39]. We start
the circuit for Grover's Algorithm by creating a superposition of 2" computa-
tional basis states in the top register (we show the general version of Grover's
algorithm Fig. 1). We initialized all the qubits in the rst register to state
jO; ;i 0i. After applying the n Hadamard gate,H ", on the rst, we have
the state:

1 Xt
ji=H "j0i = p= jxi: (5)
x2f 0;1g"

Where N = 2". Note that, j i is the superposition here. If we start the
second register with a single qubit in statejOi or jli, after the Hadamard we
achieve the respective Hadamard basis [40]. Let : f0;1gN ! f 0;1g be a
function de ned as:

1 if x is the searched element
0 Otherwise.
We de ne U; as an oracle often referred to as a black box, de ned as,

f(x)=

Ur (jiijji) = jiijji f(): (6)

When we apply Us on the statej i, the state of the second register does
not change (4), but the state of the rst register changes, and we call this state
j i;- We assume that the Hadamard basis in the second qubit igi . Here,
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j iandj i, livesin HN. Eq. (7) de nes the e ect of an oracle on the achieved
superposition.

1 X1 _
gt =Yg =5 ' Ojiiji (7
i=0

Due to Quantum parallelism,, we can observe all the database elements simul-
taneously at the quantum level. If the position of the searched element is
known, then it will be labeled as the negative value ofi in equation (7). It is
impossible to get this result at the classical level. Before we perform the mea-
surement and collapse our superposition in the classical bits, we apply arpgher
set of Hadamard gates, unitary operator, andn Hadamard gates forO( N)
times. From (4), let us de ne this unitary operator, U, as

U,=2j ih j I (8)
When we apply this operator on state ; we have,

2j ihj 1 ji,
"1 T

n
= > wY o+ z—njwi: 9)

—
1

Equation (9) is the state of the rst register and the second register is still
onstateji by assumption. Notice,j i is de ned in terms of f w; wYg states,w
represents the summation of all states that can be solution to search problem;
and w¥ is the summation of all states which are no solutions. Cge cients are
factor normalization constrained by the normalization condition, | jqj2 =1:

Thus, we can measure this state on both the register to evaluate the func-
tion f and get the probability of nding the x record. Below, we present the
implementation of this algorithm. Assuming we have an output of 1 for the
function f with high probability, we calculate the probability of all possible
input qubits on both the register. It is guaranteed to achieve the mentioned
output. Many research are bene ted from e ective implementation of Grover's
algorithm. We present such works in the following section.

3 Related Works

This section discusses some works on Grover's algorithm and Quantum
Machine Learning. In 2018, Mandviwalla et al. tested the capabilities of then-
available IBM quantum computers via four qubit implementation of Grover's
algorithm [41]. Their initial result showed then quantum computers could
only solve small problems with a small amount of data accurately and that
there is still some time before a quantum computer can surpass any classical
computer. However, for the rst time, in 2021, Zhang et al. presented bench-
marking results for successful execution of ve-qubits searching algorithm on
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IBM quantum processor [42]. The errors associated with the quantum devices
and searching algorithms hinder the e cient implementation of these algo-
rithms in NISQ devices. Zhang et al. proposed three strategies to improve
the performance of quantum search algorithms: (a) Hybrid classical-quantum
search. (b) Divide-and-conquer search. (c) Quantum Search optimization via
utilization of partial di usion operator. Currently, the e cient implementa-
tions of Grovers' algorithm on NISQ devices are limited to a few qubits. But
there are impressive theoretical contributions based on the Grovers' search
algorithm.

Schwabe and Westerbaan improved the complexity of solving multivari-
ate quadratic MQ over F, from O(2") to O(27) [43]. They evaluated the
quadratic equations at a superposition implementing Grover's \oracle" for all
possible inputs. They claim even ninety-two logical qubits can breakMQ
instances. Chakraborty and Maitra achieved an exponential speed-up in check-
ing the resiliency property of a Boolean function [44]. They analyze the Grover
algorithm for quadratic improvement in query complexity. In the proposed
strategy, quantum query complexity for resiliency analysis in terms of input
variables requires polynomial measurements. Previously it was exponential in
the worst case. The local search problem is often combined with Grover's
algorithm for global optimization of a problem (system). Grover's algorithm
promises a quadratic speed-up for searching problems. Bulger combined the
Grover algorithm with a local search technique to solve the problem that a
local search technique can not solve alone [45]. The problem de nition is math-
ematically dense, so we leave [45] as a reference for the interested reader. The
amplitude ampli cation associated with Grovers' algorithm has been applied
in pattern recognition and quantum machine learning.

Tezuka et al. applied Grover search for image pattern matching [46]. They
combined Amplitude Approximation Encoding (AAE), which uses a constant
circuit-depth variational quantum circuit for data encoding into the quan-
tum state [47] with the inversion-test operation that determines the projected
quantum state. The projected state tries to match the targeted query set for
pattern matching. The author claims the proposed framework bene ts NISQ
and FTQC devices. However, the author barely pays attention to the compu-
tational overhead in the AAE circuit. Grover Search had been implemented for
learning in Quantum Neural Network. Du et al. reformulated the classi cation
task as a searching problem [39]. They presented the application of Grover
Search in Quantum Machine Learning(QML). We will brie y discuss QML in
Section 3.1. The authors replaced the rst oracle of Grovers' algorithm with
an authors-de ned variational quantum circuit and multiple controlled qubits
gates along Z-axis. They claim that the constructed circuit will reformulate the
chosen classically hard classi cation task as a searching problem that can be
executed with possible quantum advantage in NISQ devices [39]. Some appli-
cations of quantum machine learning can provide an advantage over classical
counterparts. Support Vector Machine (SVM) can reformulate and solve the
classical problem forN features andM data in O(log ! poly(N;M )) with
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accuracy [48]. However, Rebentrost et al. proved that training and classi ca-

tion can be done with O(logNM ) run time complexity using quantum SVM
[49].
Grovers' search algorithm has been used in cryptography, optimization, search-
ing and sorting, machine learning classi cation, and many others that we
can not argue to be aware of. The above-presented applications are some
applications of Grover's application in di erent areas.

In the next section, we discuss the possible implementation of quantum
computing from the Quantum machine learning perspective.

3.1 Potential applications in Quantum Machine Learning

In this section, we brie y describe variational quantum algorithms and kernel
methods. These are the potential models to implement quantum computing
as a quantum classi er with application in Machine Learning.

3.1.1 Variational Quantum Algorithms

Variational Quantum Algorithms (VQA) address the circuit depth limit, and a
limited number of qubits constrain in current (near-term) quantum devices by
training the parameterized quantum circuit as a classi er. In practice, VQAs
run the parameterized quantum circuit in the Quantum devices and param-
eter optimization on the classical optimizer. VQAs mitigate the noise of the
quantum circuit because it keeps the depth of the quantum circuit shallow.
VQA is considered the prime proposal to achieve the quantum advantage with
near-term quantum devices [50]. Given any problem (we believe classi cation
for our simplicity), the rst step is to de ne the loss (or cost) function C. C
encodes the solution to our problem. We then perform the quantum operation
using ansatz to optimize the parameter . De ne the optimization task as:

=argmin C( ): (20)

Equation (10) is trained in quantum-classical loop to obtain  that is expected
to approximate the real parameters. One thing to note here is that while we use
the classical optimizer to train , the VQAs use quantum devices to estimate
C. This behavior is often considered the trade-o of VQAs. Once we de ne the
cost function and ansatz, we are ready to train the parameter and solve the
problem de ned by Eq. (10). Using the information in the C and optimization
technique like gradient descent, it is proved that we can guarantee the speedup
and convergence of optimizer for many optimization problems such as Eq. (10).
The most prominent implementation of VQA, sometimes also calledQuan-
tum Neural Network (QNN) is to tackle the classi cation task [51]. Here we
brie y discuss the implementation of VQAs in the Grover search algorithm for
classi cation. Du and Tao reformulated the classi cation task as the search
algorithm using VQAs. The Grover-search-based quantum learning scheme
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(GBLS) dramatically reduces the number of measurements, and it outper-
formed the classical classier in the measure of query complexity [39, 52].
Following the optimization problem in Eq. (10), we can de ne the update rule
for as:

x
(t+1) = (1) 5 L ( (t);Bi); (11)
i=1
where is the learning rate, B; is the i th batch for batch gradient descent
and B is the total number of batches. We can use varied for optimization of
di erent quantum classi ers. One can use only grover-based searching for the
training classi er and the prediction is done using optimized Variational Quan-
tum Circuit (VQC). Recall from Grover 1996 article [36], the algorithm nds
the record, a, from the dataset of sizeN by iteratively applying a prede ned
oracle
Uo, = | 2jaihaj; (12)

and a di usion operator de ned on Eq. (8), and Eq. (5) as the input state.
See Fig. 1 for the implementation of the circuit for the Grover algorithm.
We caEb replace the prede ned oraclé), in Grovers' Algorithm with VQC
U, = |L=1 U( '), where L is the depth Uy, ' are the parameters to be opti-
mized at layer | of U,. More generally, the VQC consists of a data-encoding
circuit S(x) and parameterized circuit W( ) applied to the computational
basis state. The operation can be de ned a§ i = W( )S(x)j0i", where N
is the number of qubits. A detailed implementation of VQC cal be found on
[53, 54]. the VQA with VQC is easy to implement in NISQ. However, the
training and optimization of parameters can be troublesome. The next section
brie y discusses the di erent strategy, kernel methods.

3.1.2 Kernels

The kernels method is an eminent tool in patterns analysis to identify non-
linear relationships in any given dataset [55]. The fundamental of kernel
methods lies in data embedding into higher dimensional Hilbert space where
they are easy to analyze. The kernel method uses kernel functions that esti-
mate the similarity between data in higher dimensional space by calculating
their inner product. We can switch between di erent kernel methods simply by
switching between the kernel functions. In Quantum computing, this approach
corresponds to changing the data encoding strategy.

Here we de ne a data encoding strategy. Let : X ' F  be a feature map
for a input spaceX and k: X X! C be a real or complex values positive
de nite functions for two data points.

De nition 1 (Modi ed from Def. 2 of [32]) : Quantum Kernel is de ned as the
inner product between two data encoding feature vectors with x; x%2 X

kxY=jh (0)°% (x)ij? (13)

We de ne hj:i as the inner product of two pure quantum states.
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Quantum models are often considered linear models in feature space. We
can estimate Eq. (13) using quantum computers that can calculate the inner
product between two pure quantum states.

Let us de ne a Hermitian operatorM acting on a vectors in Hilbert space
H. We candeneM as X

M = ijithij; (14)
|
where ; are the eigenvalues oM [56].]ih j is the outer product andj ;i is
an orthonormal basis inH. M is an observable or a Hamiltonian. ;s are the
measurements associated with jih ;j. Now we de ne quantum models as a
function f of data input x:

f(x)=h (iMj (x)i: (15)

Notice that Eq. 15 is in the form h ji and can be calculated as an inner prod-
uct which we have de ned as kernel methods. Thus, any quantum models can
be considered kernel methods, and those models are a.k.a. quantum neural
networks; however, based on the de nition 1 those are closely related to ker-
nel methods. Ref. [31, 32, 55, 57] investigates in-depth on quantum kernels.
The scope of this paper is not to construct a quantum classi er but to relate
quantum classi ers as kernel methods. The mathematical de nition of VQA
is closely related to the kernel methods. In both approaches, we analyzed the
data in higher-dimensional Hilbert space. Previously we discussed how VQAs
could reformulate classi cation tasks as searching problems. Constructing an
oracle is an essence of implementing Grovers algorithm for quantum machine
learning.

Below, we present a elementary implementation for constructing an oracle
using the universal gates, AND, XOR, and OR gates.

4 Algorithm Implementation
4.1 Experimental Setup

Below we present a method and experiment for the proposed work. We ran
the experiment using the Qiskit library, IBM open-source software for working
with quantum computers (refer [58] for details). Our experimental results are
divided into two parts; a) Simulation Results. b) Quantum Computer Results.
While simulator experiments are executed \qasmsimulator" and utilized up
to eight qubits, due to the limited available qubits in real quantum computers,
we restricted ourselves to two qubits experiment.

4.2 Methods

The proposed algorithm 1 requires users to initialize the number of qubits.
With the number of the qubits xed, users can de ne operations between these
qubits as clauses in formatgubit. number, Universal gates, qubitnumber. Based
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on individual clause, one of two or three qubits gates, (see Fig. 2b, 2a, 2c for
gates visualization) is applied to circuit in sequence. The algorithm combines
these gates to construct a circuit,U. U is applied as the rst oracle to Grover's
algorithm. Exploiting the amplitude ampli cation, the nal circuit will output
probabilities of possible states inO(n + c) time complexity in term of number

of qubits n and number of clausesc. The state with the highest probabilities
guarantees to yield 1 on measurement for the provided clauses. One example
for possible input sequence is provided in Table 3.

Table 3 An example of input to an algorithm: input Number of qubits and clauses.

Qubits Clauses

3

4 0 AND 1 1 XOR 2 20R3

The table represents the circuit initialization with 4 qubits and 3 clauses.
For these three clauses the algorithm rst applies AND gate Fig. 2b to the
state H “j0i, followed by XOR gate Fig. 2a, and OR gate Fig. 2c in sequential
order. We aim to predict the input sequence based on these clauses, so the
nal measurement is 1. As mentioned before, we limit ourselves to universal
gates. Below we present the construction of these gates.

We implemented the XOR gate Fig. 2a using two CNOT gates with two
circuit depth. The input qubits are control qubits, and the ancilla qubit is a
target qubit. In our example of 1 XOR 2, (1;2), are the control qubits. Using
two CNOT gates, we forced our circuit to result 1 on measurement if only
either control qubit is 1.

The AND gate Fig. 2b is implemented using a To oli gate with one circuit
depth. Similar to XOR gate, the input qubits are the control qubits and ancilla
qubit is a target qubit. If both control qubits are in jli state, the output will
be one, else zero.

The OR gate Fig. 2c is implemented using a Tooli and 2 CNOT gates
with three circuit depth. For the selected gates, output is one if and only if
one of the input gates has value 1.

(a) XOR gate. (b) AND gate. (c) OR Gate.

Fig. 2 Gates and their representation in a circuit.
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